Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 130146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365140

RESUMO

Integrin-linked kinase (ILK), a ß1-integrin cytoplasmic domain interacting protein, supports multi-protein complex formation. ILK-1 is involved in neurodegenerative diseases by promoting neuro-inflammation. On the other hand, its overexpression induces epithelial-mesenchymal transition (EMT), which is a major hallmark of cancer and activates various factors associated with a tumorigenic phenotype. Thus, ILK-1 is considered as an attractive therapeutic target. We investigated the binding affinity and ILK-1 inhibitory potential of noscapine (NP) using spectroscopic and docking approaches followed by enzyme inhibition activity. A strong binding affinity of NP was measured for the ILK-1 with estimated Ksv (M-1) values of 1.9 × 105, 3.6 × 105, and 4.0 × 105 and ∆G0 values (kcal/mol) -6.19554, -7.8557 and -8.51976 at 298 K, 303 K, and 305 K, respectively. NP binds to ILK-1 with a docking score of -6.6 kcal/mol and forms strong interactions with active-site pocket residues (Lys220, Arg323, and Asp339). The binding constant for the interaction of NP to ILK-1 was 1.04 × 105 M-1, suggesting strong affinity and excellent ILK-1 inhibitory potential (IC50 of ∼5.23µM). Conformational dynamics of ILK-1 were also studied in the presence of NP. We propose that NP presumably inhibits ILK-1-mediated phosphorylation of various downstream signalling pathways that are involved in cancer cell survival and neuroinflammation.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Noscapina , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico
2.
Discov Med ; 36(180): 129-139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273753

RESUMO

BACKGROUND: TANK-binding kinase 1 (TBK1) is an important serine/threonine kinase involved in inflammatory signaling pathways, influencing cellular processes such as proliferation, programmed cell death, autophagy, and immune response regulation. Dysregulation of TBK1 has been linked to cancer progression and neurodegenerative disorders, making it an attractive target for therapeutic development. This study aimed to identify potential TBK1 inhibitors using a structure-based virtual screening approach. METHODS: We conducted a comprehensive screening of the ZINC database to identify compounds with high binding affinity for TBK1, employing molecular docking as the primary selection criterion. The top candidates were then subjected to extensive 200 ns molecular dynamics (MD) simulations to assess the conformational dynamics of TBK1 and the stability of the protein-ligand complexes, with a focus on ZINC02095133 and ZINC02130647. RESULTS: The findings revealed that TBK1 forms stable complexes with ZINC02095133 and ZINC02130647, demonstrating consistent interactions throughout the MD simulations. This suggests that these compounds hold promise as potential lead molecules for future therapies targeting TBK1. CONCLUSIONS: This study identifies ZINC02095133 and ZINC02130647 as promising TBK1 inhibitors with therapeutic potential. However, further experimental validation and optimization are required to develop novel inhibitors for diseased conditions associated with TBK1 signaling. These findings pave the way for future investigations into the clinical utility of these compounds in combating TBK1-related pathologies.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico
3.
Int J Biol Macromol ; 259(Pt 2): 129314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211912

RESUMO

Protein kinases have emerged as major contributors to various diseases. They are currently exploited as a potential target in drug discovery because they play crucial roles in cell signaling, growth, and regulation. Their dysregulation is associated with inflammatory disorders, cancer, and neurodegenerative diseases. Pyruvate dehydrogenase kinase 3 (PDK3) has become an attractive drug target in cancer therapeutics. In the present study, we investigated the effective role of thymol in PDK3 inhibition due to the high affinity predicted through molecular docking studies. Hence, to better understand this inhibition mechanism, we carried out a 100 ns molecular dynamics (MD) simulation to analyse the dynamics and stability of the PDK3-thymol complex. The PDK3-thymol complex was stable and energetically favourable, with many intramolecular hydrogen bond interactions in the PDK3-thymol complex. Enzyme inhibition assay showed significant inhibition of PDK3 by thymol, revealing potential inhibitory action of thymol towards PDK3 (IC50 = 2.66 µM). In summary, we established thymol as one of the potential inhibitors of PDK3, proposing promising therapeutic implications for severe diseases associated with PDK3 dysregulation. This study further advances our understanding of thymol's therapeutic capabilities and potential role in cancer treatment.


Assuntos
Neoplasias , Timol , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/química , Timol/farmacologia , Simulação de Acoplamento Molecular , Proteínas Quinases/metabolismo , Neoplasias/tratamento farmacológico
4.
J Biomol Struct Dyn ; 42(6): 3193-3203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37184152

RESUMO

3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) is an enzyme that critically synthesises the biologically active form of sulfate (PAPS) for all sulfation reactions. The discovery of PAPSS1 as a possible drug target for cancer therapy, specifically in non-small cell lung cancer, has prompted us to investigate potential small-molecule inhibitors of PAPSS1. Here, a structure-based virtual screening method was used to search for phytochemicals in the IMPPAT database to find potential inhibitors of PAPSS1. The primary hits were selected based on their physicochemical, ADMET, and drug-like properties. Then, the binding affinities were calculated and analyzed the interactions to identify safer and more effective hits. The research identified two phytochemicals, Guggulsterone and Corylin, that exhibited significant affinity and specific interaction with the ATP-binding pocket of PAPSS1. Structural observations made by molecular docking were further accompanied by molecular dynamics (MD) simulations and principal component analysis (PCA) to examine the conformational changes and stability of PAPSS1 with the elucidated compounds Guggulsterone and Corylin. MD simulation results suggested that the binding of Guggulsterone and Corylin stabilizes the PAPSS1 structure, leading to fewer conformational changes. This implies that these compounds may be useful in developing PAPSS1 inhibitors for the therapeutic development against non-small cell lung cancer (NSCLC). This study highlights the potential of phytochemicals as PAPSS1 inhibitors and the utility of computational approaches in drug discovery.Communicated by Ramaswamy H. Sarma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/farmacologia
5.
J Mol Recognit ; 37(2): e3069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38053481

RESUMO

Activin receptor-like kinase 1 (ALK1) is a transmembrane receptor involved in crucial signaling pathways associated with angiogenesis and vascular development. Inhibition of ALK1 signaling has emerged as a promising therapeutic strategy for various angiogenesis-related diseases, including cancer and hereditary hemorrhagic telangiectasia. This study aimed to investigate the potential of phytoconstituents as inhibitors of ALK1 using a combined approach of virtual screening and molecular dynamics (MDs) simulations. Phytoconstituents from the IMPPAT 2.0 database underwent virtual screening to identify potential inhibitors of ALK1. The compounds were initially filtered based on physicochemical parameters, following Lipinski's rules and the PAINS filter. Subsequently, compounds demonstrating high binding affinities in docking analysis were further analyzed. Additional assessments, including ADMET, PAINS, and PASS evaluations, were conducted to identify more potent hits. Through interaction analysis, a phytoconstituent, Candidine, exhibited appreciable affinity and specific interactions with the ALK1 active site. To validate the results, MD simulations and principal components analysis were performed. The MD simulations demonstrated that Candidine stabilized the ALK1 structure and reduced conformational fluctuations. In conclusion, Candidine shows promising potential as binding partners of ALK1. These findings provide a foundation for further exploration and development of Candidine as a lead molecule for therapeutic interventions targeting ALK1-associated diseases.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Transdução de Sinais , Simulação de Acoplamento Molecular
6.
J Pers Med ; 12(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35887580

RESUMO

Oral squamous cell carcinoma (OSCC) is a major cause of death in developing countries because of high tobacco consumption. RAC-alpha serine-threonine kinase (AKT1) is considered as an attractive drug target because its prolonged activation and overexpression are associated with cancer progression and metastasis. In addition, several AKT1 inhibitors are being developed to control OSCC and other associated forms of cancers. We performed a screening of the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database to discover promising AKT1 inhibitors which pass through various important filters such as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, physicochemical properties, PAINS (pan-assay interference compounds) filters, PASS (prediction of activity spectra for substances) analysis, and specific interactions with AKT1. Molecules bearing admirable binding affinity and specificity towards AKT1 were selected for further analysis. Initially, we identified 30 natural compounds bearing appreciable affinity and specific interaction with AKT1. Finally, tuberosin and villosol were selected as potent and selective AKT1 inhibitors. To obtain deeper insights into binding mechanism and selectivity, we performed an all-atom molecular dynamics (MD) simulation and principal component analysis (PCA). We observed that both tuberosin and villosol strongly bind to AKT1, and their complexes were stable throughout the simulation trajectories. Our in-depth structure analysis suggested that tuberosin and villosol could be further exploited in the therapeutic targeting of OSCC and other cancers after further clinical validations.

7.
Front Oncol ; 12: 881246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719950

RESUMO

Precision oncology is an absolute need today due to the emergence of treatment resistance and heterogeneity among cancerous profiles. Target-propelled cancer therapy is one of the treasures of precision oncology which has come together with substantial medical accomplishment. Prostate cancer is one of the most common cancers in males, with tremendous biological heterogeneity in molecular and clinical behavior. The spectrum of molecular abnormalities and varying clinical patterns in prostate cancer suggest substantial heterogeneity among different profiles. To identify novel therapeutic targets and precise biomarkers implicated with prostate cancer, we performed a state-of-the-art bioinformatics study, beginning with analyzing high-throughput genomic datasets from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) suggests a set of five dysregulated hub genes (MAF, STAT6, SOX2, FOXO1, and WNT3A) that played crucial roles in biological pathways associated with prostate cancer progression. We found overexpressed STAT6 and SOX2 and proposed them as candidate biomarkers and potential targets in prostate cancer. Furthermore, the alteration frequencies in STAT6 and SOX2 and their impact on the patients' survival were explored through the cBioPortal platform. The Kaplan-Meier survival analysis suggested that the alterations in the candidate genes were linked to the decreased overall survival of the patients. Altogether, the results signify that STAT6 and SOX2 and their genomic alterations can be explored in therapeutic interventions of prostate cancer for precision oncology, utilizing early diagnosis and target-propelled therapy.

8.
OMICS ; 26(7): 404-413, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35759452

RESUMO

Death-associated protein kinase 3 (DAPK3) is a serine/threonine protein kinase that regulates apoptosis, autophagy, transcription, and actin cytoskeleton reorganization. DAPK3 induces morphological alterations in apoptosis when overexpressed, and it is considered a potential drug target in antihypertensive and anticancer drug development. In this article, we report new findings from a structure-guided virtual screening for discovery of phytochemicals that could modulate the elevated expression of DAPK3, and with an eye to anticancer drug discovery. We used the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT), a curated database, as part of the methodology. The potential initial hits were identified based on their physicochemical properties and binding affinity toward DAPK3. Subsequently, various filters for drug likeness followed by interaction analysis and molecular dynamics (MD) simulations for 100 nsec were performed to explore the conformational sampling and stability of DAPK3 with the candidate molecules. Notably, the data from all-atom MD simulations and principal component analysis suggested that DAPK3 forms stable complexes with ketanserin and rotenone. In conclusion, this study supports the idea that ketanserin and rotenone bind to DAPK3, and show stability, which can be further explored as promising scaffolds in drug development and therapeutics innovation in clinical contexts such as hypertension and various types of cancer.


Assuntos
Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Hipertensão , Neoplasias , Proteínas Quinases Associadas com Morte Celular/metabolismo , Descoberta de Drogas/métodos , Detecção Precoce de Câncer , Humanos , Ketanserina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Rotenona
9.
J Biomol Struct Dyn ; 40(14): 6350-6362, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33565370

RESUMO

Sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) signaling regulates numerous diseases such as cancer, diabetes, and inflammation-related ailments, rheumatoid arthritis, atherosclerosis, and multiple sclerosis. The importance of SphK1 in chemo-resistance has been extensively explored in breast, lung, colon, and hepatocellular carcinomas. SphK1 is considered an attractive drug target for the development of anticancer therapy. New drug molecules targeting the S1P signaling are required owing to its pleiotropic nature and association with multiple downstream targets. Here, we have investigated the binding affinity and SphK1 inhibitory potential of cinchonine and colcemid using a combined molecular docking and simulation studies followed by experimental analysis. These compounds bind to SphK1 with a significantly high affinity and subsequently inhibit kinase activity (IC50 7-9 µM). Further, MD simulation studies revealed that both cinchonine and colcemid bind to the residues at the active site pocket of SphK1 with several non-covalent interactions, which may be responsible for inhibiting its kinase activity. Besides, the binding of cinchonine and colcemid causes substantial conformational changes in the structure of SphK1. Taken together, cinchonine and colcemid may be implicated in designing potential drug molecules with improved affinity and specificity for SphK1 targeting anticancer therapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Alcaloides de Cinchona , Demecolcina , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química
10.
J Biomol Struct Dyn ; 39(1): 35-44, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31847782

RESUMO

Protection of telomeres 1 (POT1) is a component of the shelterin complex which is crucial for the regulation of telomere length and maintenance. Many naturally occurring mutations in the POT1 gene have been found to be associated with cardiac angiosarcoma, glioma, familial melanoma, and chronic lymphocytic leukemia. In particular, Y89C is a naturally occurring mutation of POT1, responsible for familial melanoma, and the molecular basis of this mutation is unexplored. In this study, we have extensively analyzed the structure of WT and Y89C mutant of POT1 to see the change in the conformational dynamics, free energy landscape, molecular motions and configurational frustration using molecular dynamics (MD) and other bioinformatics approaches. Y89C mutation shows a significant change in the backbone orientation, compactness, residual fluctuation, solvent accessibility, and hydrogen bonding, suggesting an overall destabilization of the protein structure. Besides, essential dynamics, conformation, magnitude, direction of motion and frustration analysis further suggesting the structural loss in POT1 due to Y89C mutation. Free energy landscape analysis also indicates the presence of a single well-defined free-energy minima in case of WT compared to multiple wells defined free energy minima observed in Y89C, clearly suggesting that this mutation leads to reduce the stability of POT1. This study possibly provides a valuable path to understand the molecular basis of Y89C-mediated development of familial melanoma.Communicated by Ramaswamy H. Sarma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Mutação , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética
11.
J Biomol Struct Dyn ; 39(5): 1781-1794, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32141394

RESUMO

MAP/Microtubule affinity regulating kinase 4 (MARK4) plays an important role in the regulation of microtubule dynamics by phosphorylation of tau protein. A higher expression of MARK4 is observed in the glioblastoma multiforme (GBM) cell lines. We identified eight synonymous and non-synonymous mutations in the MARK4 gene related to GBM in The Cancer Genome Atlas (TCGA) consortium. Out of these, three non-synonymous mutations were found in the catalytic domain of the protein (Lys231Asn, Tyr247His and Arg265Gln), were selected to see the possible deleterious effects on the structure and function using the cutting-edge in-silico tools. In addition, molecular dynamics simulation, principal component analysis, dynamic cross correlation matrix analysis and correlation network analysis were performed to gain insights into the conformation of the MARK4 and its mutants. We found that, Tyr247His shows a maximum deleterious impact, reflected from structural deviation in comparison to Lys231Asn and Arg265Gln. In conclusion, Tyr247His mutant of MARK4 has relatively higher chances of affecting the structure and function of the protein thus leading to abnormal MARK4 activity which is associated to GBM.Communicated by Ramaswamy H. Sarma.


Assuntos
Glioblastoma , Proteínas Serina-Treonina Quinases/genética , Glioblastoma/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Proteínas Serina-Treonina Quinases/metabolismo
12.
ACS Omega ; 5(24): 14720-14729, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596609

RESUMO

Sphingosine kinase 1 (SphK1) is an oncogenic lipid kinase that catalyzes the formation of sphingosine-1-phosphate via phosphorylation of sphingosine and known to play a crucial role in angiogenesis, lymphocyte trafficking, signal transduction pathways, and response to apoptotic stimuli. SphK1 has received attention because of its involvement in varying types of cancer and inflammatory diseases such as rheumatoid arthritis, diabetes, renal fibrosis, pulmonary fibrosis, asthma, and neurodegenerative disorders. In the malignancies of breast, lung, uterus, ovary, kidney, and leukemia, overexpression of SphK1 has been reported and thus considered as a potential drug target. In this study, we have performed virtual high-throughput screening of ∼90,000 natural products from the ZINC database to find potential SphK1-inhibitors. Initially, the hits were selected by applying absorption, distribution, metabolism, excretion, and toxicity properties, Lipinski's rule, and PAINS filters. Further, docking analysis was performed to estimate the binding affinities and specificity to find safe and effective preclinical leads against SphK1. Two compounds, ZINC05434006 and ZINC04260971, bearing appreciable binding affinity and SphK1 selectivity were selected for 100 ns molecular dynamics (MD) simulations under explicit water conditions. The all-atom MD simulation results suggested that the ZINC05434006 and ZINC04260971 binding induces a slight structural change and stabilizes the SphK1 structure. In conclusion, we propose natural compounds, ZINC05434006 and ZINC04260971, as potential inhibitors of SphK1, which may be further exploited as potential leads to develop effective therapeutics against SphK1-associated diseases including cancer after in vitro and in vivo validations.

13.
J Biomol Struct Dyn ; 38(12): 3610-3620, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31496427

RESUMO

Glutathione (GU), an endogenous antioxidant tripeptide, is frequently transferred in the human brain through N-methyl-d-aspartate receptor (NMDAR), profusely expressed at the blood-brain barrier (BBB) junction. GU, also modifies the characteristics of tight junction proteins (occludin and claudin) at the site of BBB by depolarizing the enzyme, protein tyrosine phosphatase that manifests its usefulness for passive delivery of nanocarriers to the brain. GU, thus, represents itself as an ideal ligand for the surface decoration of nanocarriers to successfully administer them across the brain via receptor-mediated drug delivery pathway. Hence, we have employed here, in-silico approaches to identify the potential GU-like molecules, as appropriate ligand(s) for surface engineering of nanoconstruct with the purpose of attaining targeted drug delivery to the brain. Structure-based virtual screening methods was used to filter PubChem database for the identification of bioactive compounds with >95% structure similarity with GU. We have further screened the compounds against NMDAR using molecular docking approach. Top hits were selected based on their high binding affinities and selectivity towards NMDAR, and their binding pattern was analysed in detail. Finally, all atom molecular dynamics simulation for 100 ns was carried out on free NMDAR and in-presence of the selected GU-like compound, gamma-l-glutamyl-l-cysteine to evaluate complex stability and structural dynamics. In conclusion, gamma-l-glutamyl-l-cysteine may act as potential binding partner of NMDAR which can further be evaluated in drug delivery system to brain across the BBB.Communicated by Ramaswamy H. Sarma.


Assuntos
Cisteína , Preparações Farmacêuticas , Encéfalo , Sistemas de Liberação de Medicamentos , Glutationa , Humanos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA